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UNIT 1 SOME BASIC IDEAS

AIMS

To impart an understanding of some fundamental terms and concepts in statistics
which together underpin much of what is to follow.

OBJECTIVES

At the end of Unit 1 you should be able to:

Demonstrate that you appreciate the difference between samples and
populations, and between sample statistics and population parameters.

e Explain the rationale behind statistical inference.
e Show that you understand the difference between (i) a nominal
categorical, an ordered categorical and a metric variable; and (i) a

discrete and a continuous variable.

e Organise sample data using the most appropriate frequency and
cumulative frequency distributions.

o Describe the shape of a frequency distribution in ferms of skewness,
symmetry, Normalness, etfc.


written by David Bowers, Leeds University "Working with Data - an introduction to medical statistics"


Introduction

The rationale underlying all of the statistical methods described in this
coursebook is the concept of statistical inference. Accordingly therefore we
begin by examining what this concept is and what role it plays. To do that we need
to define a few important terms.

A population is every single member of a defined group of interest. For example,
it could be defined as, "every person in the UK who suffers from asthma” or "all
children under the age of 5, living in Leeds and suffering from asthma” or “all
children under the age of 5, living in Leeds, suffering from asthma, and registered
with a particular GP", and so on. Our interest might be " the mean age at first
diagnosis”". But however a population is defined, we cannot generally study every
member of a population (think of the difficulty of even identifying all the under 5's
with asthma in Leeds, never mind locating and searching their records).

In practice therefore, if we want to discover something about any population we
invariably have to use the information from a sample taken from that population.
Provided the sample is reasonably representative of the population, we can then
apply what we've discovered about the sample to the population from which the
sample was taken. The most representative sample of all is what is called a random
sample, for which every individual in a population has to have an equal chance of
being picked for the sample.

Note that, while members of the populations (and hence of the samples) we study
in medicine will most often be people (usually patients), they could also be cervical
smears, or DNA material, or rats, and so on.

Back to our example. Suppose a random sample of 500 Leeds under 5's diagnosed
with asthma gives an mean age of first onset equal to 5.5 years. We might then
with reasonable confidence conclude that the true mean age of onset of all such
Leeds under 5's (i.e. in the population) was also going to be around about 5.5 years.
We say "around” because intuitively we know that no sample (even a random
sample) will be exactly identical in every detail to its parent population, so we can't

draw any exact conclusions about the population based on this (or any other)
sample.

This process of making informed guesses or estimates of the characteristics of a
population on the basis of sample results is known as statistical inference. The

"By “mean” we of course mean that which is commonly called the “average”.



process of simply describing the principal features of a samp/e is known as
descriptive statistics.

The particular value of the population which we wish to estimate (e.g. in the above
example the mean age of first onset of asthma in Leeds under 5's) is called the
population parameter. Other population parameters of interest might be the
proportion of girls, or the range in the age of first diagnosis, and so on. Itis
important to note that we will never actually know the true value of any population
parameter, the estimates we make are as close as we can get to the true value.

The sample value we use to estimate the value of the population parameter in
question is called the sample statistic. For example, the sample mean age of first
onset of 5.5 years in the example above is a sample statistic.

Unknown population
parameters (e.g.
population mean,
population range,

population proportion,

etc.).

Determine value of
sample statistic
(e.g. sample mean,
sample proportion,
etc.).

take sample

>
«

make inference

POPULATION SAMPLE

On its own descriptive statistics is a collection of methods to way of summarise
the principal features of some sample data. However, this process also provides us

with the sample statistic(s) we need for subsequent inferences about the
population.

So statistical inference means using the value of a sample statistic
to make an inform guess (called an "estimate”) as to the true value
of the corresponding population parameter.



Q. 1.1 Inarandom sample of 100 patients admitted to a psychiatric ward
following an act of deliberate self-harm (dsh), 20 patients have a history of
previous dsh.

(a) Which sample statistic can be calculated with this information? What is its
value?

(b) Which population parameter can be esTnmaTed using this sample statistic?
What would this estimate be?

(¢) A second random sample of 200 patients is taken from the same population,
Which sample is likely 16 lead to a more accurate estimate of the true value of
the corresponding population parameter and why?

Q. 1.2 You want to estimate the mean age of menopause in a population of post-
menopausal women prescribed HRT using a sample of 10000 such women. (a) What
sample statistic would be the most useful? (b) How large would a sample have to
be to provide the true population mean age?

Further reading: Bland, Section 3.3 or Bowers-1, pp. 5-8

Types of variable

A variable is a label we give to some attribute or property of the subjects in a
study. The "value” of the attribute can change or vary from subject to subject
and/or over time. For example, b/ood type is a variable whose value can vary from
patient to patient, as is the variable age (which also changes over time). We can
classify variables (and thus the data they produce) into two broad types,
categorical and metric, and it is important to be able to identify the type of all of
the variables in any study so that the most appropriate statistical method can be
determined (we'll see why later).

gorical variable (and thus tow corresponding types of

data):

Nominal categorical

With nominal categorical (or nominal) data the "value” is one of a number of
categories. For example, the variable "blood group” has four categories, O, A, B,



AB, into only one of which a patient can be classified. Crucially, the ordering of
the categories is arbitrary (we could equally have ordered the blood groups AB, O,
B, A, for example).

Ordinal categorical

With ordered categorical (or ordinal) data the "value” is again one of a number of
categories. Now however the categories have an inherent order. For example, in
response to the question, "How satisfied were you with your treatment?” patients
might be required to respond "Very unsatisfied”, "Unsatisfied”, "Satisfied", or
"Very satisfied". This is the natural ordering of these possible responses
(although reverse order would be just as acceptable). Similarly, Glasgow Coma
Scale scores (used fo assess head injury) have the natural ordering of 3 (coma), 4,
5,6, ..14, t0 15 (normal),. Notice that ordinal scores may be alphabetic, as in the
first of these examples, or "numeric” (3,4, 5, ... etc) as in the second.

The most important feature of such ordinal data is that the differences between
adjacent scores are not necessarily the same, i.e. they cannot be exactly
quantified. Inother words although we know that a patient who is "very satisfied"
with their treatment is more satisfied than a patient who is merely “satisfied”, we
don't know by exactly Aow much more.

Similarly the difference in wellbeing between a patient with a GCS score of 6 and
one of 7 is not necessarily the same as the difference between patients with
scores of 8 and 9 say. Nor is a patient with a score of 6 exactly half as well as a
patient with a score of 12. So "numeric” ordinal scores are not proper numbers as
such, and it is not appropriate therefore to apply the rules of arithmetic to them,
i.e. they shouldn't be added, subtracted, multiplied, etc. This is a problem we will
return to.

Categorical data is often referred to as gualitative data.
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Discrete: outcome is one of a finite or countable number of possible values, e.g.

parity (number of previous children), number of asthma attacks, number of deaths,
etc. Discrete variables usually count things.




Continuous: outcome is one of a number of infinite possible values, e.g. birthweight
(g), temperature (°C), etc. Continuous variables usually measure things.

The crucial difference between metric data and ordinal data is that with metric
data the difference between adjacent values is always the same. For example with
birthweight (g), the difference between birthweights of say 3000g and 3001g is
the same as that between 4568g and 45699, and a baby weighing 4400g is exactly
twice as heavy as one weighing 2200g. This allows us to use the rules of arithmetic
with such data. )

Note: Metric data always has units attached, e.g. length of femur (cm),
birthweight (g), time on surgical waiting list (days), blood cholesterol concentration
(mmol/ml), amount of blood transfused (ml), cervical smears (number of), patients
(number of), etc. The algorithm shown in Figure 1.1 may help you identify variable
types.

Q. 1.3 What type of variables are the following (and if metric, whether discrete
or continuous?):

(a) number of visits to the GP in a year;

(b) marital status;

(¢) size of tumour (cm);

(d) stages of breast cancer (I/II/III/IV)

(e) blood pressure (mmHg):

(f) age last birthday (years);

(g) day of week of road traffic accidents (Monday Tuesday, etc.);

(h) grade for essay (A, B, C, etc.).

(i) occupational class (professional, administrative/ clerical, skilled manual, etc.),
(j) age group last birthday (0-19 years, 20-29 years, etc.);

(k) Pressure Sore Risk Assessment Scale Scores (ranges from O=little or no risk of
developing pressure sores to 20=high risk of developing pressure sores).

Further reading: Bland p.46; or Bowers-1, Chapter 2.

Q. 1.4 Identify the type of each variable (shown in bold typeface - but excluding
Pruritus and Excoriations) in Figure 1.2, taken from a study comparing two lotions
for the treatment of nits?



Q. 1.5 Identify the type of the following variables listed in Figure 1.3 taken
from a study into the prognosis for acute back pain: (a) age; (b) sex; (c) duration
of index episode; (d) initial visual analogue pain scale score’: () initial disability
questionnaire score.

Can the databe putin  ———» NO —>» NOMINAL
meaningful order?

YES

v

Does the data have units? —» NO —>»  ORDINAL
(including "numbers of things")

YES

'

METRIC

T

Does the data come from measuring or counting things?

4/\

Counting Measuring
DISCRETE CONTINUOUS

Figure 1.1 Algorithm for identifying type of data

" A visual analogue scale is a horizontal line (typically 10cm long) drawn on a piece of paper with “no
pain” at the left-hand end and “the worst possible pain” at the right-hand end. A patient is asked to
mark the line at the point which corresponds to their pain. Afterwards a 10cm rule is placed over the
line and the “size” of the pain, in cm bands is measured. So a mild pain, for example, might score 1,
a severe pain 8.



Characteristic o Maiathi dphenothrh

. . {n=95) {n=98)
Age at sandomisation (yr) : 86 (161 8:9(16)
Sex-—~no of children (%)
Male . 31(33) 41(42)
Female 64 (67} 57 {58}
Home no {mean) . )
Number of rooms 3-3(1-2) 33(1-8
Length of halr——no of children (%)* B
Long : s 37(39) 20(21)
Mid-ong c 23(24) 33(34)
Short. . 35(3n) 44 (45)
Colour of halr—no of chiidren (%)
Blond . 15(16) 18(18)
Brown e L . 49(52) 55 (56)
Red Lt - 4(4) 4(4)
Dark , W 27(28) 21(22)
Texture of hair—no of children {%)
Straight 67(71) 69(70)
Curly o e 19(20) 25(28)
Frizzy fkinky EI 8(9) 4(4)
Pruritus-——no of chiddren (%) i . 54 (5T} 65 (66)
Excoriations~no of children (%) 25 (286} 33 (40}
Evaluation of infestation
Live lice—no of children (%)
0 18 (19) 24 {24)
N 45(47) 35 (36)
++ . 9(9 15 (15)
+++ 12(13) 15 (15)
B s 1112 9{9)
Viable nits—no of children {%)*
0 19(20) 8(8)
+ 32(34) 41 (45)
++ 22(23) 24 (25)
++ 1819 | 2021}
444 4(4) 4(4)

The 2 groups were similar st baseline except for a significant ditference for the lengh
of hair (p=0-02: chi-square}. *One value missing in the dphenothrin group.

Tabie 2: Baseline characteristics of the P humanus
capitisinfested schoolchlldren assigned to recelve malathion
or dphenothrin lotion*

Figure 1.2 Baseline characteristics of subjects in nit lotion study. The
Lancet, 344, 1994.
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TABLE +—Baseline characteristics of subjects (n=103) at entry 1o
study. Except where stated otherwise, values are numbers (percentages)

of subjects
Value
Sociodemographic variables:

Mean (SD) age (years) 465 (14:3)

Male sex 62 (60)

French nationality 92 (89)

Manual worker 29 (28)

Employed at entry 75(73)

Back pain history:

One or more previous acute episodes 63 (61)

Previous chronic (> 3 months) episode of low back
pain 8(8)

Prior back surgery 0

Median (minimum, maximum) duration of index
episode (hours) 26(1:5,70)

Sudden onset ( < 2 minutes) 36 (35)

Pain and disability variables:

Mean (SD) inital visual analogue scale score 66 (1-8)

Constant pain at night 16 (16)

Pain aggravated by impulsion 44 (43)

Pain aggravated by moving back 99 (96)

Pain worse on standing 67 (65)

Pain worse on lying 27 (26)

Unable to stand even briefly 18(17)

Mean (SD) initial disability questionnaire scoret 12-1 (5-6)

Physical findings:

Limited passive movements 72 (70

Catch 61 (59)

Suaight leg raising <75° 31 (30)

Psychosocial variables:

DSM-III-R diagnosis 12(12)
Depression 5(5)
Generalised anxicty (N

Compensation status$ 9(9)

Job difficulty (heavy labour) 16 (16)

Poor job satisfaction 34 (33)

$1f able to stand.

$Invariably awarded in France for pain occurring at work.

Figure 1.3 Baseline characteristics of subjects in back pain study. BMJ,
1994, 308, 577-80.

Frequency distributions

A frequency distribution is a description of the way in which the values of a
variable are distributed across its possible range. A frequency table is a simple
way of presenting this information succinctly. It records the number (i.e. the
frequency), or the percentage (relative frequency), of values which lie in each
category or class. As an example, Table 1.1, based on Figure 1.2, shows the
frequency and relative (or %) frequency distributions of hair colour.
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Hair ~ Relative
Frequency | frequency 52=(49/95) x
colour o 100
(%)
Blond 15 16 //
Brown 49 52
Red .4 4
-Dark 27 28
Totals 95 100

Table 1.1 Frequency distribution of hair colour in nits study

In addition, we can also calculate cumulative and re/ative cumulative
frequencies, i.e. the numbers (or %) of observations /ess than or equalto specified
levels. To find cumulative frequencies we add up (i.e. cumulate) the frequencies
starting with the first (top) value and working down the frequency column. For
example, Figure 1.4 shows the frequency (and relative frequency) distributions
for the Disability Rating Scale scores of 28 patients with traumatic brain injury
(low scores good, high scores bad).

Table 3
Functional Status as Shown by the Disability Rating Scale
Disability Rating
Scale Score* Frequency  Percentage

0 1 3.6

1 9 32.1

2 2 7.1

3 5 179

4 5 179

S 3 10.7

8 2 7.1

9 . 1 36
Note. The Disability Rating Scale scores were assigned at the time of the
interview,

*0=none, 1=mild, 2-3=panial, 4-6=moderate, 7-11 = moderately
severe,

Figure 1.4 Disability Rating Scale scores for 28 patients with Traumatic
Brain Injury. Amer J Occup Therapy, 48, 1994
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Table 1.2 shows in addition to the information in Figure 1.4, the cumulative
frequency and % cumulative frequency DRS scores. Table 1.2 tells us, for
example, that 5, or 17.8%, of the patients had a DRS score of 3, and further

that 17, or 60.7%, had a DRS score of 3 or /ess.

DRS score | Frequency | Relative (or %) | Cumulative | Cumulative
frequency frequency | relative (or %)

frequency
0 1 37 1 3.7
1 9 32.1 10 35.8
2 2 7.1 12 429
3 5 17.8 17 60.7
4 5 17.8 22 785
5 3 10.7 25 89.2
6 0 0.0 25 89.2
7 0 0.0 25 89.2
8 2 7.1 27 96.3
9 1 37 28 100.0

totals 28 100.0

Table 1.2 Disability Rating Scale scores for a sample of 28 patients with
traumatic brain injury (from Table 1.4)

Q. 1.6 What % of patients in Table 1.2 had a DRS score of: (a) 5 or less; (b) more

than 5?

With ordinal or metric data, tables of grouped frequencies can be calculated.
These provide a record of the number (and/or percentage) of observations within

certain intervals or groups.

Table 1.3 shows such a grouped frequency distribution for the age of 138 women
attending a family planning clinic and diagnosed as having endometriosis.

Q. 1.7 What number and percentage of women in the endometriosis sample
(Table 1.3) are aged: (a) less than 40? (b) 45 or more?



Age Frequency | Relative (%) | Cumulative | Relative (%)
group (number frequency frequency cumulative
(years) | of cases) frequency
25-29 3 2.2 3 2.2
30-34 14 10.1 17 12.3
35-39 42 304 59 428
40-44 58 . 420 117 84.8
45-49 18 13.0 135 97.8

> 50 3 2.2 138 100.0

totals 138 99.9"

Table 1.3 Frequency (& %) & cumulative frequency (& %) for age of

endometriosis women.

Source: BMJ, 306, 1993.
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Q. 1.8 The data in Table 1.4 contains values for the % mortality rate (deaths +
admissions) x 100, in a sample of 26 intensive care units in the UK. Construct a

grouped frequency table for this data, showing frequency, relative frequency,

and cumulative relative frequency columns (use groups 10.0-14.9, 15.0-19.9, etc.

Icu %o Icv %o Icu %o
number | mortality number | mortality number | mortality

1 15.2 10 29.4 19 18.9
2 313 11 211 20 13.7
3 149 12 204 21 17.7
4 16.3 13 13.6 22 27.2
5 19.3 14 224 23 193
6 18.2 15 14.0 24 16.1
7 20.2 16 14.3 25 135

8 12.8 17 228 26 11.2
9 147 18 26.7

Table 1.4 Mortality rates in 26 intensive care units. BMJ, 307, 1993

Q. 1.9 Why does it make no sense to calculate cumulative frequencies for nominal
categorical data (such as that for hair colour)?

" Without rounding errors this total would equal 100.



15

Further reading: Bland, pp. 47-50
or Bowers-1, pp. 37-46; 48

Shapes of distributions

In addition to the type of data involved, the "shape” of the distribution of ordinal
and metric data often influences the type of analysis performed. We can best
judge the shape of a particular distribution from an appropriate graph - we'll see
how in Unit 2, but some terms used to describe shapes are:

Positively skewed Most values on the low side with fewer high values.

Negatively skewed  Most values on the high side with fewer low values.

Symmetric The distribution of values has a fairly similar pattern
either side of the "middle” of the values.

Mound-shaped A symmetrical distribution with a dome-like shape.

Normal A symmetric distribution with a special, smooth bell-shaped
curve (very important in statistics).

Bimodal Values form two distinct peaks.

Q. 1.10 (a) How would you describe the shape of the distributions in Figure 1.5,
which displays the age distribution of NHS nursing and non-nursing staff. (b) The
data represented is grouped metric continuous for which a histogram is the
appropriate chart type. Why do you think the authors of this study chose to treat
the age groups as if they were categorical and plot them using a multiple bar
chart? (c) What alternative charts might they have used?
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Figure 1The age distribution of National Health Servic
labour, comparing nursing and non-nursing staff. B, Nursiny
staff; [J, non-nursing staff.

Figure 1.5 Clustered bar chart showing age distribution of NHS workforce.
J Advanced Nursing 1994.

The Normal distribution

The shapes of the distributions of many human clinical variables, such as height,
hemoglobin levels, blood pressure, etc., often have the special bell shape we call
the Normal™ distribution. Other variables can often be made to follow a Normal
distribution by applying a simple transformation (for instance by taking logarithms
of the original data). The Normal distribution plays a very important role in
statistical inference (which we will come to later).

The Normal distribution is a symmetric distribution, for which the mean, median
and mode are all equal (in the middle of the distribution). Most of the values
cluster around this middle of the distribution, with progressively fewer and fewer
values below and above the centre.

The histogram in Figure 1.6 shows the birthweights (g) of a sample of 952 babies
born to Jamaican women in 1997. A Normal curve is superimposed on the
distribution and shows a reasonably good fit. On this evidence, we would describe
the distribution of birthweights as being Normal.

" We generally use a capital N for Normal to distinguish the word from its non-statistical counterpart.
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If data is distributed Normally it has some very useful area properties which we
will return to in Unit 4.
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Birth weight (g)

Figure 1  Distribution of birth weights in Jamaican babies.

Figure 1.6 Histogram of birthweights in Jamaican babies with a Normal curve
superimposed. J Epid & Community Health, 51, 1997



“Solutions to Coursebook Questions
UNIT 1: Basic Statistical Ideas

Q. 1.1 (a) The sample proportion who have a history of previous dsh. 0.20
(20%)

(b) True (population) proportion of those with previous history of dsh. 0.2.
(¢) The second with n=200." The larger the sample the more likely it is to be
representative of the population.

Q. 1.2 (a) The samplé'mean age at menopause. (b) It would have to be the
same size as the population, i.e. it would have to be the population.

Q. 1.3(a) metric (discrete)
(b) nominal
(c) metric (continuous)
(d) ordinal
(e) metric (continuous)
(f) metric (discrete)
(g) nominal
(h) ordinal
(i) ordinal
(j) ordinal (underlying distribution is metric continuous)
(k) ordinal

Q. 1.4(a) age is metric continuous.
(b) sex is nominal categorical.
(c) number of rooms is metric discrete.
(d) hair length is ordinal.
(e) hair colour is nominal.
(f) hair texture is nominal.
(g) live lice is ordinal.
(h) viable nits is ordinal.

Q. 1.5(a) age is metric continuous.
(b) sex is nominal. _
(c) duration of index episode is metric continuous.
(d) initial visual analogue pain score is ordinal.
(e) disability questionnaire score is ordinal.

Q. 1.6(a) 89.2% (b) 10.8%.

18



Q. 1.7(a) 59 or 42.8%. (b) 21 or 15.2%.

19

Q. 1.8
% mortality Frequency | % frequency cumulative % cumulative
frequency frequency
0.0-9.9 0 0 0 0
10.0-14.9 9 34.6 9 34.6
15.0-19.9 8 30.8 17 65.4
20.0-24.9 5 19.2 22 84.6
25.0-29.9 3 115 25 96.2
30.0-34.9 1 3.8 26 100.0

Q. 1.9 Because the ordering of the categories is arbitrary.

Q. 1.10 (a) There are more nursing than non-nursing staff up to age of 34, but
situation is reversed for those aged more than 34; (b) They wanted to be able to
compare nursing and non-nursing staff in each age category; (c) Could have used

two histograms, dotplots or boxplots.




